Electric Force and Field Worksheet

1. Two charged spheres 10 cm apart are attracted to each other with an electrical force of $3.0 \times 10^{-6} \mathrm{~N}$. What happens to the force between the spheres if
(a) both charges are doubled and the distance remains the same. $\left(1.2 \times 10^{-5} \mathrm{~N}\right)$
(b) one of the charges is halved. $\left(1.5 \times 10^{-6} \mathrm{~N}\right)$
(c) the separation is increased to $30 \mathrm{~cm} .\left(3.3 \times 10^{-7} \mathrm{~N}\right)$
2. Calculate the force between charges of $5.0 \times 10^{-8} \mathrm{C}$ and $1.0 \times 10^{-7} \mathrm{C}$ if they are 2.0 cm apart. $\left(1.8 \times 10^{-2} \mathrm{~N}\right)$
3. Two charged spheres, Q and 2 Q , placed 4.0 cm apart, are attracted to each other with a force of $1.2 \times 10^{-9} \mathrm{~N}$.. Calculate the magnitude of the charge on each sphere. $\left(1.0 \times 10^{-11} \mathrm{C}\right.$ and $2.0 \times 10^{-11} \mathrm{C}$)
4. Two equal charges of $1.1 \times 10^{-7} \mathrm{C}$ experience an electrostatic force of $4.2 \times 10^{-4} \mathrm{~N}$. How far apart are the centers of the two charges? $(0.51 \mathrm{~m})$
5. Two identical, small spheres of mass 2.0 g are fastened to the ends of a 0.60 m long fishing line of negligible mass. The fishing line is suspended by a hook in the ceiling at its exact center. When the spheres are each given an identical electric charge, they separate as shown:

Calculate the magnitude of the charge on each sphere. $\left(2.4 \times 10^{-7} \mathrm{C}\right)$
6. Three negatively charged spheres, each with a charge of $-4.0 \times 10^{-5} \mathrm{C}$, are fixed at the vertices of an equilateral triangle whose sides are 20.0 cm long. Calculate the magnitude and direction of the net electric force on each sphere. (624 N pointing outward)
7. Three objects of charge $-4.0 \times 10^{-6} \mathrm{C},-6.0 \times 10^{-6} \mathrm{C}$ and $+9.0 \times 10^{-6} \mathrm{C}$ are placed in a line spaced equally with a distance 0.50 m between them. Calculate the magnitude and direction of the net force acting on each charge. (0.54 N left, 2.8 N right, 2.3 N left)
8. Two small spheres with charges $1.6 \times 10^{-5} \mathrm{C}$ and $6.4 \times 10^{-5} \mathrm{C}$ are 2.0 m apart. Where, on the line joining the spheres, should a third charged sphere of charge $-3.0 \times 10^{-6} \mathrm{C}$ be placed such that it experiences no net electrical force? $\left(0.67 \mathrm{~m}\right.$ from the $1.6 \times 10^{-5} \mathrm{C}$ charge)
9. A charge of $-2.4 \times 10^{-5} \mathrm{C}$ experiences an electric force of 3.2 N to the left. What is the magnitude and direction of the electric field at that point? $\left(1.3 \times 10^{6} \mathrm{~N} / \mathrm{C}\right.$ right)
10. Calculate the electric force exerted on a point charge of $2.05 \times 10^{-7} \mathrm{C}$, located in an electric field of $12 \mathrm{~N} / \mathrm{C}$ to the right. ($2.46 \times 10^{-7} \mathrm{~N}$ to the right)
11. Two charges are placed as shown:

Calculate the electric field at point Z. ($2.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$ left)
12. Two parallel plates are separated by a distance of $1.0 \times 10^{-6} \mathrm{~m}$. If the potential difference between the plates is 30.0 V , what is the electric field between the two plates? (3.0×10^{7} N/C)

