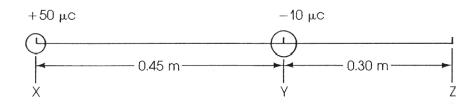

Electric Force and Field Worksheet

- 1. Two charged spheres 10 cm apart are attracted to each other with an electrical force of 3.0×10^{-6} N. What happens to the force between the spheres if
 - (a) both charges are doubled and the distance remains the same. $(1.2 \times 10^{-5} \text{ N})$
 - (b) one of the charges is halved. $(1.5 \times 10^{-6} \text{ N})$
 - (c) the separation is increased to 30 cm. $(3.3 \times 10^{-7} \text{ N})$
- 2. Calculate the force between charges of 5.0×10^{-8} C and 1.0×10^{-7} C if they are 2.0 cm apart. (1.8×10^{-2} N)
- 3. Two charged spheres, Q and 2Q, placed 4.0 cm apart, are attracted to each other with a force of 1.2×10^{-9} N.. Calculate the magnitude of the charge on each sphere. $(1.0 \times 10^{-11} \text{ C} \text{ and } 2.0 \times 10^{-11} \text{ C})$
- 4. Two equal charges of 1.1×10^{-7} C experience an electrostatic force of 4.2×10^{-4} N. How far apart are the centers of the two charges? (0.51 m)
- 5. Two identical, small spheres of mass 2.0 g are fastened to the ends of a 0.60 m long fishing line of negligible mass. The fishing line is suspended by a hook in the ceiling at its exact center. When the spheres are each given an identical electric charge, they separate as shown:



Calculate the magnitude of the charge on each sphere. $(2.4 \times 10^{-7} \text{ C})$

- 6. Three negatively charged spheres, each with a charge of -4.0×10^{-5} C, are fixed at the vertices of an equilateral triangle whose sides are 20.0 cm long. Calculate the magnitude and direction of the net electric force on each sphere. (624 N pointing outward)
- 7. Three objects of charge -4.0×10^{-6} C, -6.0×10^{-6} C and $+9.0 \times 10^{-6}$ C are placed in a line spaced equally with a distance 0.50 m between them. Calculate the magnitude and direction of the net force acting on each charge. (0.54 N left, 2.8 N right, 2.3 N left)

PH40S

- 8. Two small spheres with charges 1.6×10^{-5} C and 6.4×10^{-5} C are 2.0 m apart. Where, on the line joining the spheres, should a third charged sphere of charge -3.0×10^{-6} C be placed such that it experiences no net electrical force? (0.67 m from the 1.6×10^{-5} C charge)
- 9. A charge of -2.4×10^{-5} C experiences an electric force of 3.2 N to the left. What is the magnitude and direction of the electric field at that point? (1.3×10^6 N/C right)
- 10. Calculate the electric force exerted on a point charge of 2.05x10⁻⁷ C, located in an electric field of 12 N/C to the right. (2.46x10⁻⁷ N to the right)
- 11. Two charges are placed as shown:

Calculate the electric field at point Z. $(2.0 \times 10^5 \text{ N/C left})$

12. Two parallel plates are separated by a distance of 1.0×10^{-6} m. If the potential difference between the plates is 30.0 V, what is the electric field between the two plates? $(3.0 \times 10^7 \text{ N/C})$